On Sign Conditions Over Real Multivariate Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sign conditions over real multivariate polynomials

We present a new probabilistic algorithm to find a finite set of points intersecting the closure of each connected component of the realization of every sign condition over a family of real polynomials defining regular hypersurfaces that intersect transversally. This enables us to show a probabilistic procedure to list all feasible sign conditions. We extend our main algorithm to the case of an...

متن کامل

Testing Sign Conditions on a Multivariate Polynomial and Applications

Let f be a polynomial in Q[X1, . . . , Xn] of degree D. We focus on testing the emptiness and computing at least one point in each connected component of the semi-algebraic set defined by f > 0 (or f < 0 or f 6= 0). To this end, the problem is reduced to computing at least one point in each connected component of a hypersurface defined by f −e = 0 for e ∈ Q positive and small enough. We provide...

متن کامل

Factoring Multivariate Polynomials over Finite Fields

We consider the deterministic complexity of the problem of polynomial factorization over finite fields given a finite field Fq and a polynomial h(x, y) ∈ Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible polynomials. This problem admits a randomized polynomial-time algorithm and no deterministic polynomial-time algorithm is known. In this chapter, we give a determ...

متن کامل

Factoring Multivariate Polynomials over Large Finite Fields

A simple probabilistic algorithm is presented to find the irreducible factors of a bivariate polynomial over a large finite field. For a polynomial f(x, y) over F of total degree n , our algorithm takes at most 4.89, 2 , n log n log q operations in F to factor f(x , y) completely. This improves a probabilistic factorization algorithm of von zur Gathen and Kaltofen, which takes 0(n log n log q) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2009

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-009-9200-4